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Abstract: The statistical phase space theory is developed for the bimolecular reaction of two polyatomic species. Formulas are 
obtained for the energy dependence of the cross section and for the product kinetic energy distribution resulting from a bimole­
cular collision event. Rigorous conservation of energy and angular momentum is adhered to. The theory is applied to the reac­
tion C2H4-+ + C2H4 —• CsHs+ + -CH3 and compared with experimental results. The experimental cross section (Le Breton 
et al.) decreases much more rapidly with internal energy in the C2H4-+ ion than is predicted by theory. The result is explained 
by considering the characteristics of the potential surface in the region of the C4Hs-"1" intermediate complex. The experimental 
product kinetic energy distribution (Lee et al.) is well reproduced by theory over a range OfC2H4-"

1" kinetic energies. This result 
contrasts with conclusions of Lee et al. that suggested vibrational energy was not randomized in the C4Hs-"1" collision complex. 
The diagnostic usefulness of phase space theory is emphasized. 

I. Introduction 

One of the fundamental objectives of chemical dynamics 
is the understanding of the state dependence of rate constants 
or cross sections of chemical reactions. Recent experiments that 
are beginning to give us information of this sort include reactive 
scattering in molecular beams,' chemiluminescence from 
products of chemical reactions,2 unimolecular fragmentation 
of ions with fixed amounts of internal energy,3 variation of 
reaction cross sections with reactant ion internal energy,4 and 
velocity distribution of reaction products from unimolecular5 

and bimolecular reactions.6 Ideally, theoretical approaches 
that are based on solutions to the Schrodinger equation, or at 
least on trajectory calculations given an energy surface, are 
desired. Such approaches are being applied to simple systems 
with some success.7 It appears that such theories will not be 
generally useful for systems comprising more than three or four 
atoms, however, so other methods must be developed. Most 
other methods have their roots in activated complex theory8 

or the related RRKM theory.9 These statistical approaches 
to chemical reactions have been very useful for interpreting 
unimolecular reactions in neutral systems.10 However, the fact 
that they do not explicitly conserve angular momentum limits 
their utility in bimolecular collision systems. This restriction 
is particularly severe for low-energy ion-molecule reactions 
where very large impact parameter collisions dominate the 
cross section. 

Light and co-workers'' and Nikitin12 first successfully in­
cluded angular momentum conservation in statistical molec­

ular collision theory. Both quantum and classical forms of the 
theory, usually called phase space theory, have been developed 
and primarily applied to three-atom systems. The theory has 
been extended to include two diatomic molecules12-14 and an 
atom interacting with a prolate or oblate spheroid.1213 

Initial attempts to extend phase space theory to polyatomic 
systems limited themselves to approximate treatments. Klots15 

developed a formalism for a number of reactant pairs including 
two spherical species in the limit of zero total angular mo­
mentum, and hence its usefulness is limited to unimolecular 
reactions. In addition, he recently developed an approximate 
method suitable for use in the high total angular momentum 
limit.I5b Safron et al.16 developed an approximate "loose 
transition state" theory under the assumption that the total 
system angular momentum is transferred to orbital angular 
momentum of the products. Marcus17 has extended "tight 
transition state" theory to the cases where the total system 
angular momentum passes either totally to orbital or totally 
to internal angular momentum of the products. 

Recently we have developed techniques for rigorously cal­
culating sums of states and densities of states of certain poly­
atomic systems under the restraints of conservation of energy 
and conservation of angular momentum.18 The systems cov­
ered to date include pairwise interactions of a spherical top 
molecule with either a linear molecule or a spherical, prolate, 
or oblate top molecule as a partner. In this paper we develop 
the necessary formalism for applying these sums and densities 
of states to the calculation of reaction cross sections and 
product kinetic energy distributions. The results are then ap-

8301 



8302 

plied to the reaction 

C4H4-+ + C 2H 4 — C 3 H 5
+ + CH3-

Comparison will be made with the experimental results of Le 
Breton et al.4b who have recently measured the energy de­
pendence of the cross section using photoionization techniques. 
The experimental product translational energies have been 
reported by Lee et al .6 1 9 as a function OfC2H4-+ translational 
energy using a crossed molecular beam device and comparison 
will be made with these results. The discussion of the com­
parison of theory with experiment will center on the mechanism 
of the reaction, in particular the question of whether or not 
energy is randomized in the collision complex. 

II. Theory 

Consider a bimolecular reaction proceeding from reactants 
in channel a to products in channel b. The essence of the sta­
tistical theory is the assumption that reaction proceeds through 
resonance states in which there is strong coupling of all degrees 
of freedom. Strong coupling effectively allows a collision event 
to be separated into two distinct processes, complex formation 
and complex decay. These two processes are uncoupled except 
through energy and momentum conservation laws. Therefore 
the reaction cross section may be written as1 ' 

Table I. Glossary of Important Terms0 

<r(a-
* > - / 

d(x(a—c?) 
P(cf^b) AS (D 

It is important to note that in eq 1 "a" represents a particular 
state or average over states in the incoming channel and " b " 
a particular state or sum over states in the outgoing channel. 
The partial capture cross section from reactants to the complex 
with total angular momentum d is given by da(a—-(f)/dcf and 
P((f—-b) is the decomposition probability to channel b. The 
decomposition probability is taken as the ratio of phase space 
available to b divided by the total phase space available to the 
complex under the restraints imposed by conservation of energy 
and angular momentum. 

The methods commonly used to estimate d<r(a-*(?)/d<f are 
well known1 u 7 and will be briefly reviewed in subsection B. 
There, we will also discuss the effect of reaction path degen­
eracy20 on eq 1. However, first we shall take on a more for­
midable task, the determination of the accessible phase space 
in bimolecular systems consisting of two polyatomic species. 
A geometric approach to this problem, presented elsewhere,18 

provides the best method when one or both of the molecules 
are oblate or prolate symmetric tops. We have found, however, 
that in most cases adequate approximations to system phase 
space are obtained when three-dimensional rotors are treated 
as spherical tops.18 We therefore present in subsection A a brief 
but concise derivation of the equations used to determine 
system phase space for bimolecular systems consisting of a 
spherical top molecule paired with either a spherical top or a 
linear molecule. A glossary of important terms is given in Table 
I for the reader's convenience. 

(A) The Determination of Accessible Phase Space in Bi­
molecular Systems Involving Spherical and Linear Polyatomic 
Species. In order to determine the total phase space available 
to a given reaction channel, we first make the assumption that 
E, the energy above the zero point of the potential energy 
surface in that channel, can be divided into the total vibrational 
energy d?v and the total translational-rotational energy sum, 
(Sir 

E = O v ' 6 tr 

This assumption allows the phase space to be separated into 
the contributions from system vibrational motion and system 
translational-rotational motion. The vibrational phase space 
is given semiclassically by the density of vibrational states 

System total angular momentum 
Orbital angular momentum 
Total rotational angular momentum 
Energy above zero point of the potential energy 

surface 
Vibrational density of states at vibrational 

energy, Sv 

Rotational density of states at rotational energy 
Sr and total rotational angular 
momentum JT 

Rotational sum of states at rotational energy 
less than or equal to ST* and at total rotational 
angular momentum Jx 

Rotational-orbital density of states at rotational 
energy Sx, translational energy Su and total 
angular momentum S 

Rotational-orbital sum of states at translational-
rotational energy sum Str and at total angular 
momentum d 

Total phase space density of states at energy E 
of which energy S1 is translational and at 
total angular momentum S 

Total phase space sum of states at energy E and total 
angular momentum S 

" An asterisk on an energy or momentum symbol implies a maxi­
mum and a dagger superscript implies a minimum. The subscripts a 
and b are used when it is necessary to designate a particular reaction 
channel. 

Pv((Sv) ddiV. If we let r(d?lr,<#) be the system translational-
rotational phase space, or momentum space, the total system 
phase space is, then 

* ( £ , ( / ) = Cf Pv(E - etr)T(Sir,<f) d£ t r (2) 

The lower limit Str* is a function of <f and will be determined 
later. 

If we are interested in the total system phase space at a 
constant translational energy, d> tr must be separated into the 
system translational energy, &t, and system rotational energy, 
Sr 

S 
L 
Jr 
E 

Pv(Sv) 

P(SrJr) 

T(ST*JT) 

P(SuSrJ) 

T(6tn<f) 

*'(£,£„<*) 

*(£,<*) 

6tr ~ &t T 6 r (3) 

If V(St,ST,<f) d(?t is the total system momentum space at 
constant <?t and Sx, the total system phase space at constant 
G, is 

&(E,Gu<f) d£ t 

= d(?t C 
Js 

E-Sx 

Sr* 
p(E - <?t - Gx)P(Gt,Gx,<?) d<?r (4) 

The lower limit Sx* is a function of both d>t and S. This limit 
will also be determined later. 

In order to determine T($tr,<f) and ?>(Gt,$x,<f) we must 
treat the vector addition of three angular momenta. The 
method used is not new.14 We first couple the rotational an­
gular momenta Ji and J2 to form a resultant Jr: 

Jl + J2 = J r (5a) 

The vector J1. is then coupled with L to form the total angular 
momentum, d: 

J r + L = (5b) 

This separation of momenta is actually a separation of the 
system orbital motion and rotational motion. The vector J r 

simply describes the spatial orientation of J] relative to J2. 
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Consider now a bimolecular system of either two spheres or 
a sphere and linear molecule with total rotational energy, Sr. 
The rotational angular momenta Ji and J2 are related to Sx 

by 

Sr = B1J1
2 + B2J2

2 (6a) 

where Si and B2 are the molecular rotational constants. For 
a total rotational angular momentum Jr, J\ and J2 must lie in 
the range 

| / , -J2\ <Jv<Ji +J2 (6b) 

and for each spherical top the range of K, the projection of J 
on the internal symmetry axis, is 

-J <K<J (6c) 

The rotational phase space volume element for two spheres 
is 

dr = dAT, dK2 d/i d/2 (7a) 

For a sphere and linear molecule the volume element be­
comes 

dr = dKs 6JS d/i (7b) 

In order to determine the system rotational phase space, eq 7a 
and 7b must be integrated with respect to each angular mo­
mentum variable over the range allowed by the restrictions 
imposed by (6a)-(6c). This integration will be demonstrated 
for the sphere-sphere system. 

In order to integrate (7a) under the restraint imposed by 
(6a) the integral must be transformed to the hypersurface of 
constant rotational energy. This result is accomplished by using 
the Jacobian to convert one variable in the volume element (7a) 
to the differential dSr- Choosing J2 to be converted, the Ja­
cobian is, from (6a), 

dJ2/dST = (2S2Z2)-1 

and (7a) becomes 

dr = dKi dK2(dJ2/dSr) dST dJx 

dST dAT, dK2 dJ, 
2B7 Ji 

(8) 

The integrations of eq 8 can now be performed. The result, 
P(SnJr), is the density of rotational states of a bimolecular 
system of two spheres with total rotational energy Sx and total 
rotational angular momentum Jr. Since Â i and K2 are not 
energy dependent, eq 8 can be integrated over Kx and K2 using 
(6c): 

^dS1 r 
B2 J 

Ji 

IJ x dJ\ (9) 

The boundaries on J\ must be determined. Consider Figure 
1. The constant energy surface defined by (6a) is given as curve 
A. For a particular Jx we are restricted by momentum con­
servation to that part of the curve within the rectangular 
boundaries given by (6b). The limits of (6b) can be substituted 
into (6a) to determine J±, the values of /1 at the intersec­
tions: 

J± = 
\(wSx -BxB2Jr2Y'2- B2J±\ 

(10) 

In eq 10, a) = S] + S2. Using these limits, eq 9 can be inte­
grated over Jx to obtain P(SxJx): 

J - T+ Ji 
Figure 1. Boundaries in the Jx-J2 plane. The rectangular boundaries are 
imposed by eq 5a and curves A and B refer to eq 6a. Curve B represents 
the minimum rotational energy for which there is available system phase 
space. 

dSr CJ+ 
P(SrJr) dST = - ^ 27, d/, 

S 2 UJ-

=*&. [J+
2 - J-2] 

S2 

4Jr [uSr-BxB2J
 2Yl2dSr (11) 

The sum of states for energy less than or equal to the max­
imum allowed energy, ST*, can also be determined. The min­
imum value of Sr for a given JT is determined by setting 
P(6 r , / r) = 0 i n ( l l ) 

Sm — BrJr (12) 

where S r is the system reduced moment of inertia, BxB2Jw. 
This minimum energy describes curve B in Figure 1. Integra­
tion of eq 11 over all allowed rotational energies yields the sum 
of states: 

W r V r ) = I S'\ P(SrJr) dST 

8Jr 
(wSx* ~ B1B2Jr2)3'2 (13) 

Using exactly the same procedure eq 7b can be integrated 
for the sphere-linear system. The results are 

Sr > BJr2 (14a) 

[uSr - BsBxJr2] X'2 Sx < BJ2 (14b) 

P(SrJr) = 2Jr/w 

2 

Ssw 

2Jr 
T(Sr* Jr) = - f [O=S* ~ B%(Bx + BJ3)J2] 

3BM-

Sr* > BJ2 (15a) 

[wSr*-BsBJr2]3'2 Sr* < BJr2 (15b) 

In order to determine T(StT,(f) and P(St,Sr,<f), the sum of 
states T(Sr* Jr) and density of states P(Sr Jr) must be inte­
grated in the L-Jx plane. In this paper we will consider only 
the sphere-sphere system for ion-molecule reactions. For an 
ion-molecule interaction potential of the form Vr = —aq2/2r4, 
and for a given translational energy St, the maximum orbital 
angular momentum capable of overcoming the centrifugal 
barrier is21 

where 

Z.* = (A£ t)'/4 

A = %ti2q2a/h4 

(16) 
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J r = $ - L 
Figure 2. Range of integration in the L-J, plane for P(SuSr,(f). 

Figure 3. Range of integration in the L-J, plane for T{SUS). Curve A is 
the boundary given by eq 14. The symbols are explained in the text. 

Here, M is the reduced mass, q is the ion charge, and a is the 
polarizability of the neutral. In order to determine 1P(SuSnS), 
the density of states P(SrJr) must be integrated in the L-J1 
plane within the boundaries given by (5b), (12), and (16). An 
example of the region of integration is given in Figure 2. For 
a given Sr, J,* is obtained from.eq 12 as 

J* = (<?r/Br)'/
2 (17) 

For the region shown in Figure 2, P(S\,Sr,S) is 

J * Jr*-if r><t + L 
I P(S,,Jr) dJr dL 

0 J\4-L\ 

J * L* f*J,* 
\ P(SrJr) dJrdL 

J,*-tf J\(f-L\ 

= 2H{<f) + H(L* -S)- IrSr2Z^B1B2)
3/2 (18) 

where 
H(X) ^ X ^ T ^ f ^ (5^2-B]B2X

2) 

+ Gr2Z(B1B2)
3/2 sin-'XfJ,* 

There are five distinct results for P(S{,ST,S) depending on the 
relative values of L*, JT*, and S for the sphere-sphere system 
and, due to the boundary at S, = BJ,2, there are 17 results for 
the sphere-linear system. The entire set is presented else­
where. '8 

In order to determine T(Slr,S) we must consider a trans-
lational-rotational energy term d>tr. For a given L eq 16 can be 
inverted to give S1*, the minimum translatjonal energy capable 
of overcoming the centrifugal barrier; 

S1* = L4ZA (19) 

Equations 3 and 17 can be combined to determine S,*, the 
rotational energy maximum for a given L; 

Sr*= StT-L4/A (20) 

Equations 3, 12, and 17 also determine an energy boundary 
in the L-J, plane; 

L4/A + BJr2 < S11 (21) 

This boundary is portrayed by curve A in Figure 3. The inte­
gration of T(Tr*JT) within the boundaries given by (5b) and 
(21) gives the total rotational-orbital phase space, T(SU,S). 

For example, consider the integration of T(S,* Jr) for the 
sphere-sphere system over the region shown in Figure 3. This 
integration is performed in the following manner 

\ T(Sr* Jr) dJrdL 
0 J\<f-L\ 

I , T(Sr* Jr) dJr dL 
L- J\S •' \S-L\ 

15B]B2W
3 

-r 
P +[wST* - B1B2(S - L)2]5/2 dL 

*s0 

[ooSr*- B]B2(S + L)2]5/2 dL (22) 

In (22) ST* is given by (20) and L± are the intersections of (19) 
with the momentum boundaries given by (5b). Numerical 
techniques must be used both to solve for L± and to evaluate 
the integrals in (22). 

Using results such as (18) and (22), the total system phase 
space, eq 2 and 4 can now be evaluated. The minimum S,*, 
illustrated by curve B in Figure 3, is determined in the fol­
lowing manner. First, eq 21 is differentiated with respect to J1-, 
yielding (23a); 

(4L3/A) dL/dJr + 2BJ, = 0 (23a) 

When £tr = S1*, dL/dJ = - 1 , L = L*, and JT is determined 
from the momentum boundary as Jx = S — L*. Making these 
substitutions into (23a) yields, 

2L* 3ZBrA + L* - <f = 0 

which can be solved to give 

L* = (^f- ) ' / 3 \(S + <*/2)'/3 - (S - 3/2)'/31 

(23b) 
where 

S = (S2/4 + BrA/54y/2 

Finally, L* from (23b) can be substituted back into (21) to 
give 

S1* = L*41 A + Br(S -L*)2 (23c) 

For neutral-neutral reactions with an interaction potential of 
the form —C/rb similar considerations apply. 

The minimum Sr* is given as curve A in Figure 2 for S < 
L*. In this case Sx* is 

Sr* ~ Bx(S ~ L*)2 (24) 

If S > L* the minimum rotational energy in (4) is zero. 
(B) Determination of the Statistical Reaction Cross Section. 

Now that we have determined T(SlT,S) and P(S,,Sr,S) we can 
use them in (2) and (4) to calculate the total system phase 
space for each reaction channel. The total phase space for each 
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channel determines the decomposition probability P((f—b). 
The decomposition probability, coupled with the partial cap­
ture cross section, in turn allows us to evaluate (1). 

Let us first consider the partial capture cross section 
do-(a—»</)/d</. In order to calculate this quantity the coupling 
of three reactant angular momenta La, J\a, and / 2 a must be 
treated. As is customary,1 '-17 we assume that for most collisions 
LA is much larger than the rotational momenta. This as­
sumption will in general be valid for reactions dominated by 
large intermolecular potentials such as ion-neutral reactions 
or in beam reactions in which supersonic nozzle expansion is 
used to enhance translational energy at the expense of internal 
energy. The result of this assumption is that the system total 
angular momentum, 3, is considered to be generated entirely 
by Ld. We may therefore combine the classical collision theory 
relationships dc = 2-wb db and Sh = ixbv to obtain 

d(j(a—>-<#) irh2 

do* rfta 
(25) 

In these equations b is the impact parameter, v is the incoming 
velocity and (St

a the corresponding translational energy, n is 
the reduced mass of the reactants, and <f is expressed in units 
of h. We can now substitute (25) into (1) to obtain 

ff(a^b) = —— I 
udj\a Jo 

SP(S^b) A3 (26) 

It remains to analytically define P((f—-b), the decomposi­
tion probability of the complex to state b. This probability must 
be defined so that the sum of probabilities to all channels equals 
unity and in such a way that the reaction path degeneracy of 
each channel is properly accounted for. (We use channel to 
signify a chemically distinct set of molecules.) The reaction 
path degeneracy of a channel is directly related to S, the 
product of the symmetry numbers of the individual molecular 
species in that channel.20 

We define P{3~*b) in the following manner. According to 
eq 1 the entire collision process may be viewed in terms of two 
disjointed events: the formation of a collision complex and its 
subsequent unimolecular decay. Consider therefore a collision 
complex X which may decay into any one of a number of 
channels. For the bth channel 

- ^ b 

where ^b is the unimolecular rate constant. The decomposition 
probability to channel b is 

P(S^b) = kbIY,ki (27) 

The application of phase space theory to the calculation of 
unimolecular decay rates shows that kb is of the form15'22 

kb = SxHEb,<f)/SbhPx(Ex) (28) 

where ${Eb,(f) is given by eq 2 and the quantity px(E\) is the 
density of states of X. We substitute (28) into (27) to ob­
tain 

where 

TVTOT 

^ T O T = £* (£ , • ,<? )/S/ 

(29) 

which correctly takes into account the effect of reaction path 
degeneracy. 

Note also that summing eq 26 over all reaction paths 
gives 

TTJi2 f L3* 

trior = — <f Z PiW^i) d<f 

= irh2La*
2/2n6f (30) 

which is just the Langevin capture cross section. Hence, re­
action path degeneracy contributes to the available phase space 
of a specific channel but, as expected, it does not enter into the 
total capture cross section. 

To obtain the differential cross section for a specific product 
translational energy, eq 26 remains the same but the decom­
position probability (29) becomes 

/V-^<St
b) = h. _ d<gM>'(£b,gtV)/Sb 

EHEi.sySi 
(31) 

where $'{E,6p,3) is given by eq 4. The product translational 
energy distribution is simply 

/>(<St
b) d£ t

b = ff(a—(?t
b) d£t

b/<rroT (32) 

where CTJOT is given by eq 30. 

III. Results and Discussion 

The theory outlined in the previous section will be applied 
to the reaction 

C2H4-+ + C2H4 — C3H5
+ + CH3-

and comparison made with experimental data. The dependence 
of the cross section on internal energy of C2H4-+ will be dis­
cussed first and the distribution of kinetic energies of the 
products as a function OfC2H4-+ translational energy will be 
discussed second. 

(A) Dependence of the Cross Section on Internal Energy in 
C2H^+. Both the experimental data and the theoretical cal­
culations are summarized in Figures 4 and 5. The photoion-
ization data of Le Breton et al.4b were obtained in a single-
source high-pressure photoionization mass spectrometer. In­
terested readers are referred to that paper for a thorough dis­
cussion of the experimental technique and the method of data 
reduction used to obtain the points plotted in our Figure 4 (see 
Figure 7 of ref 4b). Of importance are the facts that these data 
were recorded at 10% conversion and the repeller field was 4 
V yielding an average ion translational energy at the exit slit 
of ca. 3 eV. At the pressure of the experiment the time between 
collisions is ca. 5 X 1O-6 s. 

The data in Figure 5 represent the direct dependence of the 
reaction cross section on internal energy in the C2H4-+ ion, as 
supplied by Williamson.23 They were obtained from photo­
ionization data similar to that presented in Figure 4. 

The phase space calculations in Figures 4 and 5 were ob­
tained from eq 26 and 29 and the data in Table II.24 In Figure 
5, the energies used to obtain the calculated curve are simply 
given as the abscissa. In Figure 4, the probability a reactant 
C2H4-+ ion contained a particular internal energy at a given 
photon energy was assumed to be given by the energy deposi­
tion function. For the purposes of this paper, this function was 
assumed to be adequately represented by the photoelectron 
spectrum.25-26 The velocity distribution of the ions in the 
photoionization instrument was calculated using known 
techniques.21 The theoretical results in Figures 4 and 5 were 
relatively insensitive to this distribution, presumably because 
relative quantities are considered in both cases. 

The comparison between theory and experiment is inter­
esting. In Figure 4, the qualitative shape of the theoretical line 
is very similar to the shape of a curve that could be drawn 
through the photoionization data points. In particular, a break 
in the curve is apparent at the onset of the 2B3 electronic state 
of C2H4-+. The break in the theoretical curve at this point is 
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Table II. Parameters Used in Phase Space Calculations in the Reaction C2H4-"
1" + C2H4 - • C 3 H 5

+ + CH3-

Spec 

C2H4 
C^H4* 
CH3 

C3H5
+ 

C2 

es 

f 

Rotational constants 
A 

4.828 
4.828 
1.531 
9.631 

H4-+ + C2H4/ 

3300(2) 
3100(2) 
3000(4) 
1600(2) 
1400(2) 
1300(2) 

B 

1.001 
1.001 
0.298 
9.631 

C2H 

cm ' 
C 

0.828 
0.828 
0.249 
4.816 

<G.M.>," 
cm-1 

1.588 
1.588 
0.484 
7.644 

Vibrational frequency distributions, cm-1 

4-
+ + CH2H4/ 

1000(4) 
900 (4) 
800 (2) 

C3H5
+ + CH3 

3200 (2) 
3100(2) 
3000 (4) 
2000(1) 
1400(4) 
1300(1) 

a X 1024cm3 

4.22* 

2.20* 

.g 

A//f°298, 
kcal/mol 

12.5C 

253rf 

34.8C 

226f 

C3H5
+ + CH3-* 

1200(4) 
1000(1) 
900(1) 
800(1) 
600(1) 
400 (2) 

" Geometric mean of the three rotational constants. * A. T. Amos and R. J. Crespin, J. Chem. Phys., 63, 1890 (1975). c D. R. Stull and 
H. Prophet, Natl. Stand. Ref. Data Ser., Natl. Bur. Stand., No. 37 (1971). d J. L. Franklin, J. G. Dillard, H. M. Rosenstock, J. T. Heron, 
K. Draxl, and F. H. Field, Natl. Stand. Ref. Data Ser., Natl. Bur. Stand., No. 26 (1969). e F. P. Lossing, Can. J. Chem., 49, 357 (1971); see 
also, S. E. Buttrill, Jr., A. D. Williamson, and P. Le Breton, J. Chem. Phys., 62, 1586 (1975). / T h e symmetry degeneracy of the C2H4-+ + 
C2H4 reactants is 5 = 4. * The symmetry degeneracy of the C 3 Hs + + CH3-
1400(2), and 800(1). 

products is S = 3. The frequencies of CH3 are 3100 (2), 3000 (1), 
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Figure 4. Relative reactivity of reaction 1 as a function of photoionization 
energy of the CjH4-"

1" ion. The solid line is the phase space calculation and 
the open circles the experimental photoionization results (ref 4b). 
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Figure 5. Relative reactivity of reaction 1 as a function of the internal 
energy in the C2H4-+ ion. The solid line is the phase space calculation. The 
circles are the experimental data (ref 23). The dashed line is a smooth curve 
drawn through the data points. 

due to the increase in the energy deposition function as the 2B3 

state becomes energy accessible. The break in the experimental 
data must also, at least in part, reflect this fact. The lack of 
quantitative agreement between the experimental data and the 
phase space calculations is very clearly shown in Figure 5. The 
experimental cross section falls very much faster than theory 
as the C2H4-+ ion becomes internally excited. Note that no 
break occurs at the onset of the 2B3 state in the theoretical 
curve in this figure because energy is a smoothly increasing 
function in the ion. It is also interesting and important that no 
apparent break occurs in experimental data at the onset of the 
2B3 state, although there are too few data points to be certain 
in this case. It does appear, however, that experimentally 
<r((3 V)/<r(£> v=o) is a smoothly decreasing function, in fact de­
creasing almost exactly exponentially. 

The results are consistent with the following interpretation: 
The phase space calculations assume the energy dependence 
of the cross section depends only on the properties of the 
products and reactants. Clearly this assumption is not adequate 

to explain the data in the present case. The cross sectional 
energy dependence implies that the details of the potential 
surface in the region of the intermediate C^Hs- +ion are im­
portant. Following Le Breton et al.,4b we assume a tetra-
methylene ion is first formed in the collision of ethylene ion on 
ethylene neutral. The following reaction scheme is envis­
aged. 

CH, CH2 

C2H4
1+ + C2H4 

i-+)* 

CH2—CH2 
(b-+)* ^ = * 

CH2 CH2 

I I 
C H 2 - C H 2 

C2H,j* T C2H4 

CH3 CH2 

I I 
C H , - C H 

+ 

(33) 

(34a) 

\ 
C3H5

+ + 'CH3 (34b) 
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a) Phase Space Surface 

2 4 * 2 4 

> [ C3H5^-CH3 

> 

>-
O 
a: 

C3H5
+- + CH3 

b) Combined Phase Space RRKM Surface 

(a+0* 

C2H4 '+CgH^ 

+ 
CHo CHo 
I c I c 

CHj—CHg 

CH» CHo 
I 3 I 2 

CHo-CH c + 

REACTION COORDINATE 
Figure 6. Schematic potential surface for reaction 1: (a) surface assumed 
for phase space calculations; (b) surface appropriate for combined phase 
space-RRKM calculation as discussed in the text. The reaction energy 
is AE and Ec is an energy associated with the isomerization barrier height. 
The symbols (a-+)* and (b-+)* represent the transition states for the two 
reaction pathways of the tetramethylene ion. 

A schematic potential surface is given in Figure 6. 
The tetramethylene ion, once formed, has two choices: either 

it can isomerize to form the more stable 1-butene ion or it can 
dissociate to reactants. The relative probability of these two 
processes will be determined by the energy and entropy asso­
ciated with each path. The transition state for dissociation to 
reactants, (a-+)*, will be characterized by high entropy as the 
process is envisioned as a simple C-C bond cleavage. The 
isomerization transition state, (b-+)*, on the other hand, will 
be low entropy as it is envisioned as a cyclic structure. If the 
isomerization reaction occurs in one step, it would entail a 1-3 
hydrogen shift and a four-member C-C-C-H ring. 

The qualitative shapes of the k vs. E plots for the two reac­
tions are shown in Figure 7.27 The isomerization reaction has 
the lower threshold but rises more slowly with energy than the 
simple bond cleavage reaction. The experimentally accessible 
energy range begins near the threshold of the fragmentation 
reaction because this is the reverse of the reaction used to form 
the excited complex. As energy is increased the fragmentation 
reaction quickly becomes comparable in rate to the isomer­
ization reaction and soon dominates the reactivity of the ex­
cited tetramethylene ion. The two dotted lines might represent 
the experimental energy range reported in Figure 5. If the 
reasonable assumption is made that the dissociation of the 
1-butene ion to products is much faster than the back isom­
erization to tetramethylene ion,28 then 

a(gv)/,r(€v=0) a / b ( g ; } 

«a(6») + kb(ev) 
The kind of curves drawn for ka(Sv) and &b(£v) drawn in 
Figure 7, which are reasonable for the processes described, will 
clearly reproduce the experimental data of Figure 5. 

This mechanism can be tested quantitatively but the theory 
for doing so is not yet complete. What must be done is to gen­
erate the tetramethylene intermediate ion via a collision be­
tween C2H4-+ and C2H4 conserving both energy and angular 
momentum. Then the relative rate constants for the two uni-

log k 

Energy 

Figure 7. Hypothetical plot of log k vs. energy for the two reaction path­
ways (34a) and (34b). The vertical dashed lines give an energy range 
comparable to that given in Figure 5. 

molecular reactions, fca(£v) and k\,(Sv), must be calculated 
from the set of tetramethylene ions with the energy and angular 
momentum distribution obtained via the formation collision. 
The first phase of this theory is complete.29 The second, how­
ever, is still being developed. While it is speculative at this point 
to say such a treatment will quantitatively fit the data, our 
experience with a similar unimolecular reaction suggests it 
will.30 A crucial parameter in the analysis will be the energy, 
Ec, that characterizes the isomerization barrier height. Since 
this quantity is unknown, it must be varied to best fit the 
data. 

(B) The Product Kinetic Energy Distribution and Its De­
pendence on the Translational Energy of C2H<c+. The inte­
grated product translational energy distributions at several 
C2H4-+ translational energies reported by Lee et al.6 are given 
in Figure 8 as the open circles. These data were obtained in a 
crossed ion-neutral beam machine by integration of the ve­
locity contours19 over the complete velocity space. The C2H4-+ 
ions were formed in an electron impact source at 70 eV ionizing 
electron energy. 

The phase space calculations are given as the solid lines in 
Figure 8. The solid curves are calculated by assuming half of 
the C2H4-+ ions have an internal energy of 0.25 eV while the 
other half have an internal energy of 2.11 eV. These values 
correspond to the average of the two major bands, having ap­
proximately equal intensity, in the photoion-photoelectron 
coincidence spectra31 of C2H4 below the dissociation threshold 
of C2H4-"

1". One, of course, cannot accurately predict the in­
ternal energy of C2Hr+ ions formed under the conditions of 
the experiment but the method used here should not be greatly 
in error. The bars in the figure indicate the results of calcula­
tions done with all C2H4-+ ions with 2.11 eV internal energy 
(upper limit on bar) and with 0.25 eV (lower limit on bar). 
Other appropriate quantities used in the calculation are given 
in Table II. 

The comparison with experiment is interesting. At lowest 
reactant ion energies the calculations agree with experiment 
for product ion energies up to ca. 0.6 eV and then slightly un­
derestimate the probability for the high energy tail portion of 
the products. Similar agreement is found between calculation 
and experiment for the 2.21 eV reactant ion except some minor 
deviations begin to occur at ca. 0.4 eV product ion energy. Only 
when the reactant ion energies reach 3.26 eV does serious 
disagreement between experiment and theory begin to ap­
pear. 

The lack of exact agreement between theory and experiment 
at the high product energies could occur for several reasons. 
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6 t = 3.26eV 
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2.0 
cm. PRODUCT TRANSLATIONAL ENERGY 

Figure 8. Plot of P(S1) vs. 6, for various C2H4-
+ reactant ion kinetic 

energies. The experimental data (O) are from ref 6. The solid lines are the 
phase space calculations discussed in the text. 

First, there could be errors in the phase space calculations 
above 1 eV or so due to the failure of Langevin theory to ac­
curately predict the cross section in this energy range. These 
errors are not believed to be serious for the low-energy products 
regime where Langevin theory is still appropriate but could 
affect the high-energy region. 

Second, the experiments may discriminate in favor of the 
high-energy products. We have no way of evaluating the 
magnitude of this effect but collection efficiencies should 
certainly improve for high-energy ions. 

Third, the rotational energy of the products may not be 
distributed statistically at highest collision energies. If the 
orbital angular momentum of the reactants is (in part) passing 
preferentially to product orbital angular momentum rather 
than being statistically distributed between product molecular 
rotational states and orbital states, then the product transla-
tional energy distribution would be shifted to higher energies 
than predicted by statistical theory. Such an interpretation is 
not inconsistent with the energy dependence of the spatial 
product distribution. At low energies (E < 1.4 eV) the products 
are spherically disposed about the center of mass suggesting 
the complex is long lived and the products isotropically scat­
tered in the center of mass system. At intermediate energies 
(1.4 eV < E < 3.2 eV) the products are scattered with for­
ward/backward symmetry about the collision axis suggesting 
the products are departing in the collision plane.32 By E = 4.1 
eV, the products are primarily forward scattered suggesting 
a direct mechanism dominates. Hence, it is possible that as the 
collision energy increases at least a fraction of the collisions 
occur in which the incoming orbital angular momentum passes 
preferentially to the product orbital angular momentum. The 
spatial product distribution does not require that this be the 
case, however. 

Finally, it is possible that the vibrational energy is not ran­
domized in the collision complex and in its subsequent de­
composition to products. This was the conclusion of Lee et al.6 

A number of reasons suggest to us this is probably not the case, 
however. First, characteristic vibrational periods are two to 
three orders of magnitude shorter than rotational periods. 
Hence, in one rotational period hundreds, or even thousands, 
of vibrations can occur. It is likely, for the C4Hs-+ intermediate 
considered here, that this time span is sufficient for complete 
anharmonic coupling of the normal modes. Second, the basis 
on which Lee et al. came to their conclusion is suspect. The 
considerable disagreement between theory and experiment 
cited by Lee et al.6 clearly does not exist in the results presented 
here (Figure 8). The origin of the disagreement between ex­
periment and theory suggested by Lee et al.6 has been traced 
by Klots.15b In using the theory of Safron et al.,16 Lee et al.6 

assumed for convenience that the total rate of decomposition 
of the excited complex integrated over the available energy only 
weakly depends on the total angular momentum of the com­
plex. Such is simply not the case, and this assumption led to 
erroneous theoretical predictions by Lee et al. There is no need 
to assume only an "effective" number of oscillators, less than 
the true number, are active in the collision complex, and it is 
our opinion that there is no evidence that demonstrates that 
vibrational energy is not randomized in the ethylene system. 

IV. Summary 

Statistical phase space calculations have been made on the 
reaction of C2H4-+ with C2H4 using a theory that rigorously 
conserves energy and angular momentum. Comparisons have 
been made with experiment on the dependence of the reaction 
cross section on internal energy in C2H4-+ and on the depen­
dence of the product translational energy distribution on 
C2H4-+ kinetic energy. The cross sectional dependence is only 
qualitatively consistent with phase space predictions. The ex­
perimental cross section decreases much faster with energy 
than predicted by theory. In our opinion the reason for the 
discrepancy is the cross section of the reaction is determined 
by the potential surface characteristics in the region of the 
intermediate C4Hg-+ complex. These characteristics are 
completely ignored in the phase space approach which assumes 
reaction can be characterized solely by the properties of the 
separated reactants and products. An argument is made that 
the dependence of the cross section on energy can be accounted 
for by considering a competition between an isomerization 
reaction in the C4H8>+ complex and the back dissociation re­
action of the complex to form the reactants. Quantitative 
predictions await further theoretical development. We con­
clude the reaction most likely proceeds according to statistical 
theory predictions but this suggestion remains to be demon­
strated unambiguously. 

The product kinetic energy distribution is well fit by the 
statistical phase space theory over a broad range of reactant 
ion kinetic energies. There are minor deviations at highest 
energies and several possibilities are suggested to explain these. 
The agreement between theory and experiment contrasts with 
conclusions of Lee et al.6 who suggested vibrational energy is 
not randomized in the collision complex. Klots'5b has obtained 
results in agreement with ours using an approximate phase 
space theory. 

The product kinetic energy distribution primarily depends 
on the potential surface characteristics in the products region. 
Hence, it is not too surprising these results are accurately fit 
by the phase space theory while the cross section is not. Similar 
findings have been made in a number of unimolecular systems 
we have recently reported;30 the energy dependence of the rate 
constant is not well reproduced by the phase space approach 
but the product kinetic energy distribution is. The rate constant 
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dependence on energy in these systems was well fit using 
RRKM theory, however, which prompted our proposed ex­
planation of the energy dependence of the cross section in the 
ethylene reaction. 

The diagnostic value of the statistical phase space theory 
should be emphasized. Because energy and angular momentum 
are rigorously conserved, the theory presented here serves as 
a limit from which the mechanism of chemical reactions can 
be analyzed. It is our opinion that reliable mechanistic infor­
mation can be best extracted from experimental data through 
comparisons of that data with a theory such as the one pre­
sented here. More approximate theoretical approaches are 
often useful and sometimes necessary, but care must be taken 
to apply them properly. It is also worth noting that experi­
mental details should be analyzed and incorporated into the 
theoretical analysis as accurately as possible. It is usually the 
case that velocity and energy distributions can be obtained that 
reliably reflect the experimental conditions used to obtain the 
data that are to be compared with theoretical predictions. The 
extra effort required to incorporate them into the theory should 
be made. 
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